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Monte Carlo method to calculate the central charge and critical exponents

Paul J. M. Bastiaansen* and Hubert J. F. Knops
Institute for Theoretical Physics, University of Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

~Received 14 October 1997!

We present a finite size scaling technique to calculate the central charge and some critical exponents of
two-dimensional critical models with a Monte Carlo simulation. We use systems with dimensionsL3M , and
focus on the scaling behavior inM /L. The finite size scaling relation that we use is the universal expression for
the stress tensor on the torus. The stress tensor is the operator that governs the anisotropy of the system, and
stems for the theory of conformal invariance. We show that a lattice representation of the stress tensor can
easily be constructed, such that its expectation value on the torus can be calculated in a Monte Carlo simula-
tion. In doing so, we observe that the stress tensor turns out to be remarkably insensitive to critical slowing
down. We show that the typical simulation time scales with the linear system dimensionL roughly asL4, and
that this scaling holds for the ordinary Metropolis algorithm as well as for more sophisticated cluster algo-
rithms, such that it is fruitless to invoke the latter. We test the method for the Ising model~with central charge
c5

1
2!, the Ashkin-Teller model (c51), and the F model~alsoc51!. @S1063-651X~98!09103-X#

PACS number~s!: 64.60.Ht, 05.70.Jk, 02.70.Fj, 02.70.Lq
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I. INTRODUCTION

There exist basically two methods to obtain numeri
information on two-dimensional critical systems. In th
transfer matrix method one calculates the largest eigenv
of the transfer matrix and thus one finds the free energy
the system on aL3` cylinder. From the theory of confor
mal invariance@1#, one knows that this free energy is relat
to the central chargec as

f 5 f `2
pc

6L2 . ~1!

By introducing appropriate seams on the cylinder, that a
the cyclic boundary conditions, one also obtains some of
leading critical dimensionsx. Here one uses the result from
conformal invariance that the central chargec̃ from a system
with a seam is given by

c̃5c212x. ~2!

After the first paper@2# that used this technique, this metho
has become very popular@3,4#.

The advantage of the method is the high numerical ac
racy ~in fact, machine precision! with which the free energy
of a L3` system can be determined. A distinct disadvanta
is that it is limited to rather small values ofL, since the
required storage capacity and computer time increase e
nentially with L. In some cases—depending on the syst
under scrutiny—the practical upper bound onL renders an
accurate determination of the central charge impossible@5#.
Notably, it implies that the method is limited to discrete sp
systems.

These limitations are lifted but exchanged for a loss
numerical accuracy of the free energy in the Monte Ca
transfer matrix method@6,7#. A promising @8,9# method to

*Electronic address: paulb@tvs.kun.nl
571063-651X/98/57~4!/3784~13!/$15.00
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study the transfer matrix for discrete spin systems for largL
is density matrix renormalization@10#. Recently, this method
was shown to be able to calculate central charges@11#.

The second method that was extensively used to ob
numerical information on two-dimensional critical systems
the standard@12# Monte Carlo~MC! method. It can be used
for fairly large (L3L) system sizes, both for discrete an
continuous spin systems. Critical exponents can be extra
from the finite size scaling behavior of the fluctuations
critical quantities like energy and order parameter.

However, a direct evaluation of the free energy is n
possible in MC simulations. Therefore, to obtain the cen
charge from Eq.~1!, one has to use a more elaborate M
method. Recently, Krech and Landau@13# proposed such a
method, based on the work of Mon@14#. They tested their
method on theq-state Potts model forq52, 3, and 4, and
find an accurate agreement with the known results of
central charge of this model. Their method is based on
evaluation of an expectation value on a torus geome
L3M of the form

^e2Hseam&. ~3!

Here Hseamis an Hamiltonian that introduces a seam in t
direction of M over the torus. Hence this Hamiltonian is o
the order ofM , which has to be quite large. Such averag
are notoriously hard to obtain in MC simulations.

Wang and Baker@15# used a method to evaluate the ce
tral charge that is not based on Eq.~1!. Instead, they used a
expression for the central charge due to Cardy@16#, that
involves the Fourier transform of the energy-energy corre
tion function. This expression contains the specific heat
ponenta, which has to be determined as well.

In this paper we want to extend this palette of existi
numerical techniques by presenting a direct MC method
evaluate the central charge, which is based on the expe
tion value of a simple operator that can be defined for a
model. This operator represents, in the scaling limit,
stress tensorT. The stress tensor is an operator that is co
3784 © 1998 The American Physical Society
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57 3785MONTE CARLO METHOD TO CALCULATE THE CENTRAL . . .
nected with the anisotropy of the system; when one allo
for anisotropy in critical models, critical points in the pha
diagram become critical lines. The whole of such a criti
line falls into the same universality class, and moveme
along the line are governed by a marginal operator, hav
its critical dimensionx52. This anisotropy operator is th
stress tensorT, and can be defined for any critical model.
is, in the language of conformal invariance, the second
scendant of the identity operator. The expectation value oT
on aL3M torus is known from conformal theory, and co
tains in particular the central chargec. By comparing our
MC results, as a function ofM /L, with this formula we
obtain the central charge and the leading critical dimensio

A difference between simulations on the stress tensor
on quantities like the energy is that the former are alm
insensitive to critical slowing down. We explain this obse
vation by showing how the typical simulation time scal
with the system size in terms of the dynamic exponentz; our
conclusion is that it is fruitless to invoke sophisticated M
algorithms like that of Swendsen and Wang@17# that have a
lower value ofz than the standard Metropolis algorithm, b
cause this would not influence the typical simulation time

II. CONFORMAL INVARIANCE
OF CRITICAL FIELD THEORIES

Besides being invariant against a rescaling of the len
parameters, critical models are believed to be conform
invariant as well: their large scale behavior is invaria
against transformations that correspond locally to a rota
and a rescaling. Such transformations are called confor
transformations. From this symmetry, present at critical
largely follows the structure of the Hilbert space, at least
the case of two-dimensional models. We will summar
some results that we need in the sequel; more details ca
found in the review by Cardy@1#.

In this section, we will be concerned with a system d
fined on a ‘‘skew’’ torus; its dimensions areL3M , and
boundary conditions are cyclic in the horizontal directi
and cyclic after a shift overMx in the vertical direction, as in
Fig. 1. Denoting the transfer matrix of the system w
exp(2H), where H is the Hamilton operator, its partition
function on such a geometry is

Z5(
j

^ j ue2MHeiM xPu j &, ~4!

FIG. 1. The torus geometry on which the conformal field theo
is defined. The dimensions of the torus areL3M , the boundary
conditions are such that the indicated points are identified: they
cyclic in the horizontal direction, and cyclic with a shift overMx in
the vertical direction.
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where the summation is over all configurationsu j & in a row.
The statesu j & make up the Hilbert space on which the tran
fer matrix ~or operator! exp(2H) acts.P is the momentum
operator, the generator of translations in the horizontal dir
tion. The Hamilton operatorH of the model is the generato
of translations in the vertical direction, and commutes w
P. When the transfer matrix is suitably defined, there ex
an orthonormal basis of the Hilbert space, consisting
eigenstates of the Hamiltonian and of the momentum op
tor. From the theory of conformal invariance it follows th
these eigenstates with their eigenvalues are closely relate
the critical dimensions of the model.

There turns out to be a set of fundamental operat
present in the theory, that are indicated asLn and L̄n for n
PZ. They satisfy the celebratedVirasoro algebra. The
Hamiltonian H and the momentum operatorP can be ex-
pressed in terms ofL0 and L̄0 as follows:

H5E0L1
2p

L
~L01 L̄0!2

pc

6L
, ~5!

P5
2p

L
~L02 L̄0!. ~6!

Here c is the central charge of the model, andLE0 is the
bulk ground state energy of the Hamiltonian, which we w
not need and from now on consider subtracted from it. T
eigenstates of the Hamiltonian and of the momentum op
tor are labeled asuD1m,D̄1m̄&, with the relations

L0uD1m,D̄1m̄&5~D1m!uD1m,D̄1m̄&, ~7!

L̄0uD1m,D̄1m̄&5~D̄1m̄!uD1m,D̄1m̄&. ~8!

Hence, with the bulk energyLE0 subtracted from the Hamil-
tonian,

HuD1m,D̄1m̄&

5
2p

L S D1D̄1m1m̄2
c

12D uD1m,D̄1m̄&, ~9!

PuD1m,D̄1m̄&5
2p

L
~D2D̄1m2m̄!uD1m,D̄1m̄&.

~10!

The statesuD,D̄& with m5m̄50 are calledprimary states,
and the states withm and/or m̄ unequal to zero are their
conformal followers. The values ofD andD̄ are related to the
critical dimensionsx and spin indicesl of the operators of
the theory according to

x5D1D̄1m1m̄, ~11!

l 5D2D̄1m2m̄. ~12!

The critical dimensionsx are the complements with respe
to the dimensiond52 of the scaling indicesy5d2x. These
scaling indices are the eigenvalues of the renormaliza
flow equations in ordinary renormalization theory, and yie
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expressions for the critical exponents. For example, in
Ising model there are two relevant fields: the thermal fi

which hasyt51, and the magnetic field withym5 15
8 . The

critical exponents are expressed in these indices as,
a5(2yt22)/yt50 for the specific heat exponen
b5(22yh)/yt5

1
8 for the exponent of the order paramete

andn51/yt51 for the exponent governing the divergence
the correlation length.

The appearing values ofD andD̄ from the primary states
together with their multiplicity~the level of their degen-
eracy! as well as the multiplicities of their conformal follow
ers, determine the full structure of the Hilbert space. T
values of the critical dimensions and their multiplicities a
universal. This implies that the partition function~divided by
its bulk value that results fromE0! considered as a functio
of M /L, is universal in the scaling limit ofL andM large.

From Eqs.~9! and~10! follows that the diagonal elemen
of exp(2MH)exp(iMxP) for the stateuD1m,D̄1m̄& is

Q2c/24Q̄2c/24QD1mQ̄D̄1m̄, ~13!

with

Q5expS 2
2pM

L
1

2p iM x

L D , ~14!

andQ̄ the complex conjugate ofQ. Summing over all diag-
onal elements yields the partition function of the model. L
us label the critical dimensions withj , then

Z/Zbulk5Q2c/24Q̄2c/24(
j

NjQ
D j 1mjQ̄D̄ j 1m̄j . ~15!

This expression is called theuniversal expression for the
partition function, and contains the central chargec, and the
values of the critical dimensionsD j1mj andD̄ j1m̄j as well
as their multiplicitiesNj . Therefore, it contains the critica
dimensionsxj and hence the critical exponentsa, b, etc.,
although it does not give an interpretation of the dimensi
xj as belonging to thermal or magnetic fields.

In the limit M /L→`, the universal expression for th
partition function yields the well known finite size scalin
relation for the central charge, used in transfer matrix cal
lations,

f ~L !5 f ~`!2
pc

6L2 , ~16!

where

f ~L !52 lim
M /L→`

1

ML
ln~Z!. ~17!

The free energy, however, is not directly accessible in M
simulations. Consequently, apart from those mentioned
the introduction, there exist no MC results that yield t
central charge of critical models. The stress tensor, howe
is an operator that is closely related to the Hamilton opera
and it is this operator~or, rather its expression in terms o
e
d

g.,

,
f

e

t

s

-

in

r,
r,

spin variables! that actuallyis accessible in MC simulations
in contrast to the free energy. We will show this in the s
quel.

Conformal invariance in critical field theories states th
the action~or, in statistical mechanics terms, the classi
interaction! is invariant against conformal transformation
The change in the action for nonconformal transformation
determined by the stress tensorT(r ),

T~r !5S Txx~r !

Tyx~r !

Txy~r !

Tyy~r ! D , ~18!

where T(r ) is a symmetric, traceless tensor. Hen
Txx(r )52Tyy(r ) and Txy(r )5Tyx(r ). Usually, one defines
the independent components ofT as

T~u,v !5
1

2
@Txx~u,v !2 iTxy~u,v !#, ~19a!

T̄~u,v !5
1

2
@Txx~u,v !1 iTxy~u,v !#. ~19b!

Hereu andv are the position coordinates on the torus. T
dimension (D,D̄) of T and T̄ are ~2,0! and ~0,2!, respec-
tively. Hence their critical dimensionx52 and their spin
indices arel 562. So the stress tensor is a marginal ope
tor. Its componentsT andT̄ can be expressed in terms of th
fundamental Virasoro operatorsLn and L̄n as follows:

T~u,v !5S 2p

L D 2S c

24
2 (

n52`

`

e2~2p i /L ! une~2p/L ! vnLnD ,

~20a!

T̄~u,v !5S 2p

L D 2S c

24
2 (

n52`

`

e1~2p i /L ! une~2p/L ! vnL̄nD .

~20b!

This expression is valid on the torus geometry;u (v) is the
horizontal~vertical! position on the torus. The Virasoro op
eratorsLn and L̄n with nÞ0 play the role of raising and
lowering operators for the statesuD1m,D̄1m̄&. Because
these states are orthonormal, onlyL0 and L̄0 have nonvan-
ishing contributions in the expression for the expectat
value ofT. From expression~20b! and the eigenvalue equa
tions ~8!, the expression for the expectation value of t
stress tensor can easily be calculated. The expectation v
is

^T&5
1

Z (
j

^D j1mj ,D̄ j1m̄j uTuD j1mj ,D̄ j1m̄j&.

~21!

Substituting Eq.~20b! and the expression for the partitio
function ~15! yields
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^T&5S 2p

L
D 2S c

24
2

(
j
Nj~D j1mj !Q

2D j 2mjQ̄2D̄j 2m̄j

(
j
NjQ

2D j 2mjQ̄2D̄j 2m̄j D ,

~22a!

^ T̄&5S 2p

L
D 2S c

24
2

(
j
Nj~D̄j1m̄j !Q

2D j 2mjQ̄2D̄j 2m̄j

(
j
NjQ

2D j 2mjQ̄2D̄j 2m̄j D .

~22b!

We will be mostly concerned with the diagonal eleme
Txx52Tyy of the stress tensor. The expression forTxx is

^Txx&5S 2p

L
D 2

3S c

12
2

(
j

Nj~D j1mj1D̄j1m̄j !Q
2D j 2mjQ̄2D̄j 2m̄j

(
j

NjQ
2D j 2mjQ̄2D̄j 2m̄j

D .

~23!

This expectation value can be written as the derivative of
free energy with respect to the aspect ratioM /L, as

^Txx&522p
] f

]l
with

M

L
5el. ~24!

Upon taking the derivative, the volumeML of the system is
kept constant. Like magnetization and magnetic field,
‘‘field’’ l5 ln(M/L) is the external field conjugate to the o
erator that is the stress tensor. Therefore,^Txx& couples to the
anisotropyl of the system, where the isotropic system h
l50.

III. A LATTICE REPRESENTATION
OF THE STRESS TENSOR

In conformal field theory, the stress tensor is an opera
that is quite abstract. It is defined only after the lattice mo
has reached its continuum limit. For lattice models, howev
the stress tensor can easily be defined as well. This la
representation of the stress tensor must thus have the sc
behavior predicted by expression~23!. Below we will illus-
trate the construction of the lattice representation of
stress tensor for the Ising model, but first we give a m
general way to proceed.

A. Constructing the stress tensor

Construct, for a lattice model, an operatort(r ) as an ex-
pression in the local, fluctuating field~s!, such that~i! t(r )
transforms as a second rank tensor@in particular,t(r ) picks
up a minus sign under a rotation over 90°#, and~ii ! t(r ) has
the same symmetry as the interaction energy of the mo
under study. In general, this means thatt(r ) is invariant un-
der global spin flips or spin rotations.
s

e

e

s

r
l

r,
ce
ing

e
e

el

If one now expressest(r ) in terms of scaling operators i
is clear that the operators that occur should all be tensors
change sign under rotations overp/2, i.e., they have
l 5D2D̄562,66,. . . . SinceD and D̄ are always non-
negative, it follows that the scaling dimensionx of the ap-
pearing scaling operators all havex>2. The marginal case
havingx52 andl 562, is in fact the stress tensor; all othe
operators in the expansion are irrelevant. To be more prec
in this general case, the operatort(r ) couples to both inde-
pendent componentsTxx(r ) andTxy(r ) of the stress tensor
As will become clear below, however,t(r ) can easily be
defined such that it couples toTxx(r ) only. In that case, one
has

t~r !5aTxx~r !1••• , ~25!

where the dots represent irrelevant operators. Requirem
~ii ! guarantees thatt(r ) and Txx(r ) share the same interac
tion symmetry, so that the coefficienta does not vanish by
symmetry. Constructing operatorst(r ) can, as we shall see
be done in several ways, but all choices yield expansion~25!,
albeit with different values ofa.

Having constructed the operatort(r ) one can evaluate its
average in a MC simulation on a geometry ofL3M , for
several values ofM /L andL large. The result should follow
the universal expression forTxx(r ) as

^t~r !&5a^Txx~r !&1OS 1

LvD , ~26!

where the expression for^Txx(r )& given in Eq.~23! is pro-
portional to 1/L2, and dominates the second term that h
v.2. Hence we can fit theM /L dependence of the left han
side against Eq.~23!, obtaining, in particular, the centra
chargec.

B. Stress tensor for the Ising model

We will illustrate the construction of the discrete stre
tensort(r ) in the case of the Ising model. The starting po
is the close connection between stress tensor and anisot
Let us therefore start with the anisotropic actionA of the
ordinary, square lattice Ising model,

A52(
i j

~JxSi , jSi 11,j1JySi , jSi , j 11!, ~27!

where the couplings (Jx ,Jy) allow for anisotropy. The iso-

tropic critical point is Jx5Jy5Jc5 1
2 ln(11&), but this

point becomes a critical line when unequal values ofJx and
Jy are allowed for.

The central notion here is that, in the scaling limit, anis
ropy amounts to a rescaling of the length parametersx andy
with a different scaling factor. Hence, in the scaling limit, th
anisotropic model with (Jx ,Jy) behaves as the isotropi
model with rescaled length parametersx andy,

x85e2lx, ~28!

y85e1ly. ~29!
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The value ofl in this equation determines the values ofJx
and Jy . In this way, Eq. ~29! fixes the parametrization
@Jx(l),Jy(l)# of the critical line withl. The isotropic point
has l50 with Jx(0)5Jy(0)5Jc , and the parametrization
obeysJx(l)5Jy(2l).

On a finite geometryL3M , this anisotropic rescaling
means that the volumeML of the system remains untouche
but that the aspect parameterM /L scales according to

M 8

L8
5e2l

M

L
. ~30!

In the scaling limit, therefore, the partition function with th
anisotropic action of Eq.~27!, which we callZ(l,M /L) de-
pending onl, equals that of the isotropic Hamiltonian with
rescaled aspect ratioM 8/L8,

ZS l,
M

L D5ZS l50,e2l
M

L D . ~31!

A general movement in the phase diagram is perform
by a scaling operator. A renormalization transformation
isotropic, which implies that there can be no renormalizat
flow along the critical line (Jx ,Jy). This implies that the
scaling operator that governs the movement along this
must be invariant against a renormalization transformat
i.e., it is a marginal operator having its critical dimensi
x52.

In the case of the Ising model, action~27! immediately
shows which operator this must be. Write the action a
symmetric part plus a part that determines the anisotrop

A5Ac2(
i j

@Jx~l!2Jc#Si , jSi 11,j1„Jy~l!2Jc…Si , jSi , j 11 ,

~32!

where Ac is the action at the isotropic critical poin
Jx5Jy5Jc . Expanding up to first order inl, this expression
can be written as

A5Ac1l(
i j

txx~ i , j !, ~33!

where txx( i , j ) is the lattice representation of the stress te
sor,

txx~ i , j !52Jx8~0!~Si , jSi 11,j2Si , jSi , j 11!. ~34!

Here we used the symmetry propertyJx(l)5Jy(2l). The
operatortxx( i , j ) governs the anisotropy of the system. Th
lattice representation of the stress tensor~34! for the Ising
model was already known for a long time@18#; the value of

Jx8(0)5 1
2&.

In fact, the operator in Eq.~34! is written astxx because it
is one of the two components of the full stress ten
tab( i , j ). This tab( i , j ) has the same properties as the fie
theoretical stress tensor: it is a second-rank, symmetric tr
less tensor. The other componenttxy( i , j ) can be written as

txy~ i , j !52Jxy~Si , jSi 11,j 112Si , jSi 11,j 21!, ~35!
d
s
n

e
n,

a

-

r

e-

with a certain prefactorJxy , which will be different from
Jx8(0), because it couples next-nearest-neighbor spins
stead of nearest neighbors. The off-diagonal elements of
discrete stress tensor couple to the anisotropy in the diag
directions.

It is this operatortab(r ) that appeared in Sec. III A. It is
constructed such that it behaves as a second-rank symm
tensor with the same symmetry under global spin flips as
interaction energy itself. Of course, this version oftab( i , j ) is
not the only possible one; it can also be defined with furt
neighbor interactions.

The precise connection between the discrete variantt(r )
of the stress tensor and its field theoretical counterpar
obtained by taking the derivative of Eq.~31! with respect to
l at l50. Using Eq.~24!, this yields

Jx8~0!(
i j

^Si , jSi 11,j2Si , jSi , j 11&5
ML

p
^Txx~u,v !&,

~36!

where^Txx(u,v)& is the expression@Eq. ~23!# for the expec-
tation value of the diagonal component of the stress ten
Note that this expression is a universal function of cen
charge, critical dimensions, and their multiplicities. Th
value of Jx8(0), however, is in general unknown, such th
we will have to include it as a fit parameter.

Expression~36! combined with Eq.~23! yields the rela-
tion that is central to this work: it expresses the expectat
value of the lattice representation of the stress tensor in te
of the universal quantities that we want to know. As we w
use a rectangular geometry, without the shift in bound
conditions, we setMx50 and obtain

^Si , jSi 11,j2Si , jSi , j 11&

5aS 2p

L D 2S c

12
2

(
j
Njxj expS 22p

M

L
xj D

(
j
Nj expS 22p

M

L
xj D D , ~37!

where 1/a5pJx8(0). SeeFig. 2 for an example of the func
tional dependence. The prefactora is the samea that ap-
pears in Eq.~25!. The physical interpretation of it is given b
the relation 1/a5pJx8(0); it determines the ‘‘amount of an
isotropy’’ that the system obtains, once the stress tenso
switched on. Note thata is nonuniversal; it depends on th
precise definition of the model, as well as on the definition
the stress tensor. The other quantities present in Eq.~37!,
however, are the central charge, the critical dimensions,
their multiplicities, and those are all universal. There is
infinite number of critical dimensions, but only a limite
number of these is ‘‘small,’’ say, less than 2. For lar
enough values of the aspect ratioM /L only a limited number
of critical dimensions have substantial contributions to E
~37!; the contributions of the remaining dimensions then
in fact so small that they will fall in the noise of the MC dat
Hence a fit of the expression against MC data must be
sible. Typically, we will takeM /L*1.
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IV. FITTING THE MONTE CARLO RESULTS

Fitting the MC results against the universal expression
the stress tensor~37! requires a decent fit program, as th
number of fit parameters is quite large, and requires so
theoretical reflection on the model as well. We will deal w
the use of the universal expression~37! and the corrections to
scaling in different subsections.

A. Universal expression for the stress tensor

The number of critical dimensionsxj that appears in the
universal expression~37! for the stress tensor is infinite
which clearly is an infeasible number of fit parameters. M
of the dimensions, however, are large. Their contribution
Eq. ~37! goes as exp(22pxM/L), so if we limit the calcula-
tions to values of the aspect ratioM /L that are not too small
most of the dimensionsxj have a vanishing contribution
Performing some preliminary MC simulations suggests
reasonable lower bound toM /L. Typically, we took
M /L*1. The upper bound onM /L is determined by the
value of M /L where ^txx(r )& reaches its asymptotic value
To determine a reasonable upper bound onM /L, the same
preliminary simulations can be used. The asymptotic va
of ^txx(r )& is

^txx~r !&uM /L→`5aS 2p

L D 2 c

12
. ~38!

This expression also shows why the asymptotic value itse
not sufficient for a determination of the central charge
only gives an estimate ofac instead ofc.

Performing simulations to obtain the expectation value
the stress tensor between these bounds onM /L is in prin-
ciple sufficient to extract the desired quantities by fitting t
results against expression~37!. Typically, we take three or
four critical dimensions into account, the identity dimensi
x050, present in any critical model, and two or three no
trivial onesxj . For these dimensions, the multiplicitiesNj
must be specified in the expression as well.

FIG. 2. The expectation values of stress tensor~1! for the Ising
model, defined in Eq.~46b!, as a function of the aspect paramet
M /L. From high to low, the plots show the expectation values fr
system dimensionsL running from 4 to 10. The lines are the resu
of the fit against Eq.~37! together with a correction to the scalin
term ~45!. Note that, for each value ofL, the stress tensor a
M /L51 is zero by symmetry.
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A multiplicity is always integer, and when it is larger tha
1, the corresponding critical dimensionx is degenerate, and
thus an additional symmetry is present in the model. So
theoretical reflection on the model often is sufficient to
veal such symmetries. Another possibility is to perform fi
with different values of the multiplicities and to choose t
set that gives the best fit.

The lowest appearing values of the dimensionsx5D1D̄
correspond to primary fields. As noted in Sec. II, to ea
primary field belongs a tower of conformal followers or d
scendants, that have values of the critical dimensions
differ by an integer from that of the primary field; they a
D1m and D̄1m̄ with m,m̄PN. The first descendant of a
scalar primary fieldO(r ) with dimensions~D,D! is ¹O(r ), a
vector field that has two components; one having (D11,D),
and the other having (D,D11). To improve the fit, we will
include this first descendant into Eq.~37!. This inclusion
introduces no new fit parameters; the value of its criti
dimension isx11 whenx is the critical dimension of the
primary field, and this value appears twice. Hence the m
tiplicity of the first descendant is twice that of the corr
sponding primary field. Having fixed the multiplicities in ex
pression~37!, this leaves us with four or five free paramete
the prefactora, the central chargec, and two or three non-
trivial dimensionsxj .

B. Corrections to scaling

The above analysis of the universal behavior of the str
tensor is valid in the scaling limit. The discrete version of t
stress tensortxx(r ), however, is not a scaling field; as argue
in Sec. III, it can in fact be written as expansion~25! in
scaling fields, of which only the first term is the true stre
tensor with its universal behavior. The fit to this express
is treated Sec. IV A, but for smaller system sizes other te
in the expansion become important. The scaling behavio
these terms inL goes asL2v with v.2.

To obtain accurate results, we should include at least
of these correction terms in the expression that we fit aga
our MC results. That means that we have to perform cal
lations for different values of the widthL of the system in
order to be able to extract theL22 behavior of the true stres
tensor.

In principle, we could proceed by performing simulatio
for a fixed value ofM /L and increasing values ofL and
extract, by extrapolation, the part of^txx(r )& that scales as
L22. This means that, for any value ofM /L, we have to fit

^txx~r !&5
a

L2 1
b

Lv , ~39!

and have to use the values ofa for each value ofM /L to fit
against expression~37!. We can, however, do better.

To this end, write the first scaling operator on the dots
expansion~25! asO(r ),

^txx~r !&5a^Txx~r !&1^O~r !&. ~40!

Now consider the general expression for the expecta
value of an operatorO(r ) on a system with geometryL3M ,
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^O~r !&5
1

Z (
j

^ j ue2MHO~r !u j &, ~41!

with Z the partition function andH the Hamilton operator of
Eq. ~9!. Using the basisuD1m,D̄1m̄& of the Hilbert space
yields

^O~r !&5

(
j
Njaj~L !e22p ~M /L ! xj

(
j
Nje

22p ~M /L ! xj
, ~42!

where we used Eq.~9!. Here the parametersaj (L) are the
diagonal elements of the operatorO(r ) in the basis
uD1m,D̄1m̄& of the Hilbert space,

aj~L !5^D j1mj ,D̄j1m̄j uO~r !uD j1mj ,D̄j1m̄j&.
~43!

As the basis functionsuD1m,D̄1m̄& depend only onL and
not on M /L, the full M /L dependence of the expectatio
value ^O(r )& is accounted for by the exponentials in E
~42!. The amplitudesaj (L) depend onL only. Taking only
the leading correction into account, they can be written a

aj~L !5
aj

Lv , ~44!

with the same value ofv for each of the diagonal elemen
@1#. In our fit, we will only include the few most importan
critical dimensionsxj : the identity dimensionsx050, and
the first two nontrivial ones. That means that including t
expression for̂ O(r )& as a correction to scaling gives on
four additional fit parameters: the correction exponentv and
three amplitudesa0 , a1 , anda2 .

In the other case, by naively extrapolating the behavio
^txx(r )& for large L, we have to include the two fit param
etersv and b for each value ofM /L. The above approach
thus drastically reduces the number of fit parameters.

Still, in the complete analysis of the MC results, the nu
ber of fit parameters is quite large. Typically, we need fo
parameters from expression~37!, which are the prefactora,
the central chargec, and the two most relevant dimension
x1 andx2 . For the corrections to scaling, we use the expr
sion following from Eqs.~42! and ~44!,

^O~r !&5
1

Lv

(
j
Njaje

22p ~M /L ! xj

(
j
Nje

22p ~M /L ! xj
, ~45!

giving four additional parameters, which arev, a0 , a1 , and
a2 .

In this way, we perform a combined fit of the MC resu
for all values ofL andM /L, in one single fit using eight fit
parameters. This is a large number, but the functional dep
dence of the formula, to be fitted for two variables simul
neously, is very restrictive. Especially for expression~37!,
the behavior inL is restricted toL22, and the values of the
dimensionsx1 andx2 appear as dimension as well as amp
tude.
e

f

-
r

-

n-
-

The number of critical dimensionsxj and the values of
M /L that have to be included in the fit are a matter of tr
and error. Sometimes it turned out to be necessary to de
some of the lowest values ofM /L from the data set. Lower
values ofM /L clearly stabilize the fit, but on the other han
including these values requires more critical dimensio
from expression~37! to describe the full data set. We varie
the lower bound onM /L and the number of critical dimen
sions, until the quality of the fit became high enough.

This procedure requires a fit program that yields, ap
from the values of the fit parameters and their error bar
parameter that indicates whether the fit can be trusted or
Our case amounts to a two-dimensional fit~in L and M /L!
using eight or ten fit parameters. The program we use
based on routines from Ref.@19#. The parameter that indi
cates the quality of the fit is called thegoodness of fit Q. The
value ofQ lies between 0 and 1, and is based on thex2 of
the fitted data.Q gives the probability that thex2 of a certain
data set exceeds that of the actual data set. A very low v
of Q means that it is highly unlikely that the function use
gives the correct theoretical description of the data. In
case this means that we either included values ofM /L that
are too small, or not enough critical dimensionsxj .

V. COMPARISON WITH EXACTLY SOLVED MODELS

In order to test the method, we performed MC simulatio
on some models of which the scaling behavior on the toru
known exactly. We chose the Ising model~with central
chargec5 1

2!, the Ashkin-Teller model~with c51!, and the
F model~also with c51!. There is a line in the phase dia
gram of the Ashkin-Teller model that can be mapped, b
duality transformation and a graphical representation@20#,
exactly on the F model. We chose to simulate the cor
sponding points in the Ashkin-Teller model and the F mod
The results, however, differ, which is an illustration of th
importance of boundary conditions in such simulations. T
duality transformation alters the boundary conditions, givi
rise to a different behavior of both models on a finite geo
etry.

In case of the Ising and Ashkin-Teller models, we pe
formed MC simulations using the standard Metropolis alg
rithm. For the F model, we had to use a cluster algorithm
well ~to be described below!. We performed simulations on
system with geometryL3M with varying values ofL as
well as ofM /L. We sampled different versions of the stre
tensor txx(r ), in order to obtain independent estimates
central charge and critical dimensions.

A. Ising model

We carried out our simulations on the ordinary squa
lattice Ising model, with the action given in Eq.~27! at its

isotropic critical point given byJx5Jy5Jc5 1
2 ln(11&).

The construction of the stress tensor is described in Sec
Actually, taking different versions of the discrete stress te
sor txx(r ) gives an independent check on the accuracy of
results. All different versions should couple to the true str
tensorTxx(r ), albeit with different prefactorsa. We chose
two versions of the discrete stress tensor, one defined
nearest-neighbor couplings and the other with next-ne
nearest-neighbor couplings:
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~1! ^Si , jSi 11,j2Si , jSi , j 11&, ~46a!

~2! ^Si , jSi 12,j2Si , jSi , j 12&. ~46b!

Note that the stress tensor defined with next-nearest-neig
couplings corresponds to the off-diagonal elements of
stress tensor; its expectation value on the geometry use
zero by symmetry. We took the system geometryL3M with
L varying from 4 to 10 andM /L varying from 1.5 to 10.

The resulting expectation values were fitted against
pression~37! together with a correction to scaling term
Eq. ~45!. We took two nontrivial critical dimensionsx1 and
x2 into account, both with multiplicity 1. The data for stre
tensor~1!, together with the results of our fit, are plotted
Fig. 2 to obtain a feeling of the behavior of the stress ten
The numerical results of the fit are summarized in Table
Even for those small system sizes and correspondingly
ited computer resources, accurate results are obtained.

B. Ashkin-Teller model

A more severe test of the method is obtained by con
ering a model having dimensions lying closer to each oth
The Ashkin-Teller model is a useful candidate for testing o
method. It has in its phase diagram a critical line which c
be mapped on the~exactly solved! six vertex model@20#.
The universal partition sum of the Ashkin-Teller model
the torus is exactly known@21#, so it can be compared with
our MC results.

The Ashkin-Teller model has two Ising spinsS and P
with S,PP$11,21% on each lattice site, that interact wit
an action

A52(̂
i j &

J~SiSj1Pi Pj !1KSiSj Pi Pj , ~47!

where ^ i j & denotes a summation over nearest-neighbor
tice sites. The critical line in the phase diagram that can
mapped on the six vertex model is parametrized by

exp~2J!5
12W

W
, ~48a!

TABLE I. Monte Carlo results for the Ising model. Stress te
sors~1! and ~2! refer to the definition in Eq.~46b!. Values of the
prefactora, central chargec, and the first two critical dimension
x1 andx2 are given and compared with their exact values. Errors
the last digit are given in parentheses.v is the power of the 1/L
correction, and g.o.f. is the ‘‘goodness of fit.’’ In the case of stre
tensor~1!, the prefactora is known exactly@18#.

Stress tensor~1! stress tensor~2! Exact

a 0.450 ~2! 1.277 ~3! &/p50.4501 . . .a

c 0.500 ~2! 0.498 ~1! 1/2
x1 0.1254 ~6! 0.1256 ~4! 1/8
x2 1.0 ~4! 1.1 ~4! 1
v 4.3 ~1! 4.29 ~8!

g.o.f. 0.83 0.97

aOnly for stress tensor~1!.
or
e
is

-

r.
I.
-

-
r.
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exp~2J12K !5
11W

12W
. ~48b!

The weightW equals the Boltzmann weight of the four ve
tices in the six vertex model that carry a step. The ot
vertices are flat and have Boltzmann weight 1.

The critical line of Eq.~48b! is a line with central charge
c51 and continuously varying exponents. By expressing
partition function of the Ashkin-Teller model in the scalin
limit in terms of Coulomb gas partition functions, all critica
exponents can be obtained. For this derivation, the read
referred to Ref.@21#; we will only state the results.

Part of the exponents varies continuously along the c
cal line. Their value is expressed in terms of the renorm
ized value of the Gaussian couplingg, present in the Cou-
lomb gas partition functions. The dimensionsx of the
primary fields are

x5
e2

2g
1

gm2

2
with e,mPZ, ~49!

andg is the Gaussian coupling, given by

g5
8

p
arcsinS 1

2WD . ~50!

The other dimensions are constant along the critical line.
chose, rather arbitrarily, the pointW50.8 on the critical line
for our simulations. At this point, the three most releva
dimensions are

x150.125 ~with multiplicity 2!, ~51a!

x250.2908 . . . ~with multiplicity 1!, ~51b!

x350.8596 . . . ~with multiplicity 1!. ~51c!

Typically, the multiplicity of the degenerate dimensionx1
~which is constant along the critical line! can be guessed
beforehand, though some theoretical reflection on the mo
is necessary. To this end, consider the expansion in sca
operators ofS andP,

S~r !5aSp~r !1••• , ~52!

P~r !5aPq~r !1••• , ~53!

wherep(r ) andq(r ) are the leading~most relevant! scaling
operators in the expansion. The manifest symmetryS↔P of
action ~47! implies that

aS
2^p~r1!p~r2!&5aP

2 ^q~r1!q~r2!&. ~54!

Hence it follows thatp(r ) and q(r ) share the same critica
dimensionsx. On the other hand, spin reversal symmetryS
→2S implies that

^S~r1!P~r2!&50, ~55!

which implies that the dominant term forur12r2u large in
this expression must vanish as well. Hence

aSaP^p~r1!q~r2!&50. ~56!

n

s
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TABLE II. Monte Carlo results for the Ashkin-Teller model, corresponding to the six vertex model with Boltzmann weightW50.8. The
stress tensors~1!–~4! are defined in Eq.~57d!. For notation, see Table I.

Stress tensor~1! Stress tensor~2! Stress tensor~3! Stress tensor~4! Exact

a 0.36 ~2! 0.78 ~3! 0.23 ~1! 0.65 ~2!

c 0.97 ~6! 0.99 ~3! 0.96 ~4! 0.96 ~3! 1
x1 0.128 ~3! 0.130 ~2! 0.128 ~3! 0.128 ~2! 0.125
x2 0.33 ~8! 0.34 ~5! 0.34 ~6! 0.35 ~4! 0.2908 . . .
x3 0.9 ~4! 0.8 ~1! 0.9 ~3! 0.9 ~2! 0.8596 . . .
v 3.8 ~2! 4.1 ~1! 4.0 ~2! 4.2 ~1!

g.o.f. 0.80 0.016 0.76 0.065
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This ensures thatp(r ) andq(r ) aredifferentscaling opera-
tors sharing the same critical dimensionx. Therefore this
magnetic critical dimensionx must have multiplicity 2. Note
that the second argument does not apply for energylike
erators likeSi , jSi 11,j , such that the energy scaling field wi
be nondegenerate.

We performed MC simulations using the standard M
tropolis algorithm, again on the system with geome
L3M , with L varying from 5 to 12 andM /L varying from
1.5 to 10. We sampled four different versions of the str
tensortxx(r ):

~1! ^Si , jSi 11,j1Pi , j Pi 11,j2Si , jSi , j 112Pi , j Pi , j 11&,
~57a!

~2! ^Si , jSi 12,j1Pi , j Pi 12,j2Si , jSi , j 122Pi , j Pi , j 12&,
~57b!

~3! ^Si , j Pi , jSi 11,j Pi 11,j2Si , j Pi , jSi , j 11Pi , j 11&,
~57c!

~4! ^Si , j Pi , jSi 12,j Pi 12,j2Si , j Pi , jSi , j 12Pi , j 12&.
~57d!

Stress tensors~1! and~2! are defined such that the symmet
betweenS andP spins is incorporated.

It turns out that in this case three nontrivial dimensio
have to be included in the fit. This brings the total number
fit parameters to no less than 10. Still, relatively good res
are obtained; they are summarized in Table II.

C. F model

A nice illustration of the importance of boundary cond
tions is obtained when a dual version of the Ashkin-Tel
model is considered. As stated, the critical line of t
Ashkin-Teller model can be mapped exactly onto the
model, using a duality transformation and a graphical rep
sentation@20#. On a finite system, however, this mappin
affects the boundary conditions, such that both models w
periodic boundary conditions will have a different behav
on the torus.

The model we chose to consider in fact is an intermed
model between the F model and the Ashkin-Teller mod
and is obtained from the latter by applying a duality tran
formation on one of the spinsS or P only. In this way, we
obtain two coupled Ising models, defined on two interpe
etrating sublattices. Both Ising models are equal; they in
act via a nearest-neighbor coupling such that a broken I
p-
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bond carries a Boltzmann weightW, where the weightW is
the same as theW in Eq. ~48b! of the Ashkin-Teller model.
The coupling between the Ising models only exists in
restriction that two broken Ising bonds are not allowed
cross each other. An elementary square of the lattice cont
two spins of both sublattices; diagonally opposed spins
long to the same sublattice. The restriction is that at most
of the bonds over the elementary square may be broken

The resulting model can easily be mapped on the
model, seen as a body centered solid on solid~BCSOS!
height model@22#. To this end, the Ising-Bloch walls ar
identified with the steps, carried by the first four vertices
the F model. To become steps, walls have to be equip
with an arrow; the steps have to be identified as a step u
a step down. This arrow assignment is simply such that
adjacent Ising-Bloch walls carry antiparallel arrows if th
belong to the same sublattice, and carry parallel arrow
they belong to different sublattices.

In this way, a configuration of the two Ising models
mapped onto a configuration of the F model, and vice ve
There is, however, a difference in boundary conditions
the torus. If we consider the F model on a finite geometry
a height model, we have to allow for defects at the bounda
The smallest defect in the F model is a defect of two u
heights, which corresponds to two steps running over
system. The corresponding Ising configuration howev
would have one Ising-Bloch wall running over the system
each sublattice, which is not allowed when the two Isi
models have periodic boundary conditions. Hence for th
model the allowed defects at the boundary are height dif
ences multiples of 2, whereas in the formulation of the Is
models, the height differences at the boundary are multip
of 4.

Related to these defects is a complication that aris
when one naively tries to simulate this version of the
model using a single-spin Metropolis algorithm. As the u
dates in such an algorithm are always local, it cannot gen
ate configurations with defects around the torus. The al
rithm is able to generate islands of flipped spins, but such
island never can cross an Ising-Bloch wall of the other s
lattice. This implies that the algorithm is nonergodic; the p
of phase space it reaches is restricted to that part that ha
same defects at the boundary as the initial configuration

That does not mean that the results of the simulation m
no sense. The model that results when using only the M
tropolis algorithm is a true height model, such that on t
boundaries no defects are allowed at all. This model ren
malizes to the Gaussian model. The universal form of
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partition function is known@23#, but behaves somewha
anomalously because it has a continuous spectrum of cri
dimensions, that result in an integral instead of a sum in
~37!. The universal partition sum of the Gaussian mode
the result of this integral. Inclusion of its form in our fit fo
this model indeed yields the correct result.

The difficulty in boundary conditions, however, can eas
be overcome using a cluster algorithm, that allows for n
local updates of the configurations. In our simulations,
used a standard Metropolis algorithm for thermal equilib
tion, combined with a cluster algorithm@17,24# that is able to
generate defects, in order to make sure that the whole p
space can be reached. We performed simulations on
model withL varying from 6 to 18 andM /L from 2 to 5. It
turned out in this case the stress tensor reaches its asymp
value already forM /L'5.

We sampled two possible versions of the stress tenso

~1! ^Si , jSi 12,j2Si , jSi , j 12&, ~58a!

~2! ^Si , jSi 13,j 112Si , jSi 21,j 13&, ~58b!

where we took into account that energylike spin produ
always must couple spins of the same sublattice. The m
simple version of the stress tensor couples nearest-neig
spins of each sublattice, but its expectation value on the
tem geometries that we considered is zero by symme
Stress tensor~2! is, regarding its definition, a mix oftxx(r )
and txy(r ), but this is no problem since, on the used geo
etry, anytxy(r ) is zero.

The fact that this model is a height model ensures t
there are basically two types of operators, spin wave
vortex operators, with dimensions given in Eq.~49!, that
both are doubly degenerate.~cf. Ref. @25# for further discus-
sion.! Hence the lowest critical dimensions have multiplic
2. We fitted the resulting expectation values of the differ
stress tensors, using two non-trivial critical dimensions. T
results are summarized in Table III.

It is noteworthy that the prefactora in the definition of
the stress tensor is independent of the boundary conditi
Our fit on the simulation that only used the Metropolis alg
rithm ~described above! yielded the same prefactors as tho
in Table III. That means that expansion~25! of the discrete
stress tensor in terms of scaling fields only depends on l
properties.

TABLE III. Monte Carlo results for the F model with Boltz
mann weightW50.8. Two different stress tensors are used for
calculation of the central charge and critical dimensions. They
defined in Eq.~58b!. For notation, see Table I.

Stress tensor~1! Stress tensor~2! Exact

a 0.83 ~6! 1.32 ~7!

c 1.06 ~7! 1.03 ~6! 1
x1 0.291 ~6! 0.289 ~5! 0.2908 . . .
x2 0.7 ~1! 0.65 ~9! 0.8596 . . .
v 3.2 ~2! 2.8 ~1!

g.o.f. 0.28 0.27
al
q.
s

-
e
-

se
he

tic

s
st
or
s-
y.

-

t
d

t
e

s.
-

al

It turned out that including values ofM /L smaller than 2
destroyed the quality of the fit, yielding a far too low valu
of the goodness of fit. The reason probably is that there
much more dimensionsxj present that are quite small an
that start to become important for values ofM /L smaller
than 2. This can be seen from the value ofx2 that follows
from the fit; it is significantly lower than the exact value
the second dimension. Apparently, in the fit programx2
plays the role of an ‘‘effective’’ dimension, incorporating th
values of several dimensions in one. This casts doubt on
validity of the highest dimension that is given by the
program, but is seen not to affect the values of the cen
chargec and the most relevant dimensionx1 .

VI. SIMULATION TIMES AND AUTOCORRELATIONS

MC calculations of a marginal operator like the stre
tensor typically encounter additional difficulties as compa
to observables like energy and magnetization. The la
quantities have a relative error in MC simulations that do
not scale with the system size, whereas this is not the c
for an operator like the stress tensor; its relative error
creases with the system size.

This can be seen as follows: consider an operatorO(r ) of
which we want to calculate its expectation value. Its scal
behavior will be dictated by a critical dimensionx,

1

L2 (
r

^O~r !&;L2x, ~59!

where L is the linear system size. The errorDO(r ) in the
average value is related to the number of samplesN in the
MC simulation and to the second moment of its distributio

DO~r !
2 5

1

N

1

L4 (
r ,r8

^O~r !O~r 8!&2^O~r !&^O~r 8!&. ~60!

Note thatN stands for the number of statisticallyindepen-
dent MC samples. The dependence onL of the simulation
time to reach independent samples will be discussed be

Typically, the double summation in the last expressi
has two contributions; a short range contribution and a lo
range contribution. The short range contribution, say wit
a region with radiusR, follows

(
ur u,R

^O~r !O~0!&2^O~r !&^O~0!&→const ~61!

for L large. The constant is roughly proportional to the rad
R when it is not too large. The long range contribution,
the other hand, is dominated by the critical dimensionx as

(
ur u.R

^O~r !O~0!&2^O~r !&^O~0!&;L222x. ~62!

Now there are two cases. If the dimensionx<1 the long
range contribution dominates Eq.~60!, and the relative error
in ^O(r )& scales according to

DO~r !

^O~r !&
;

1

AN
. ~63!
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It is inversely proportional to the square root of the numb
of MC samples, but does not scale with the system sizeL.
This is the usual case for, e.g., magnetization and energ
the Ising model. In casex.1, however, the short range con
tribution dominates the error for largeL, which implies that
the relative error in̂ O(r )& scales according to

DO~r !

^O~r !&
;

1

AN
Lx21. ~64!

We will want to obtain the same relative error for all diffe
ent linear system dimensionsL in our MC simulations. For
observables havingx<1 this requires the same number
MC samples for allL. For x.1, however, Eq.~64! dictates
thatN;L2x22. In case of the stress tensor, havingx52, the
number of MC samples should thus be proportional toL2.

At first sight, it seems that this fact makes it difficult
reach large system sizes, as the simulation time is dire
proportional to the number of required MC samples. Th
however, is only partly true. The other parameter which
termines the simulation time is the time it takes to gener
statistically independent configurations. Critical systems
known to suffer from critical slowing down. If one uses th
standard Metropolis algorithm, the typical timet it takes to
generate statistically independent configurations increa
with the system size as a power law.

Unexpectedly, it turns out that the stress tensor is rem
ably insensitive to critical slowing down. This can be judg
from its autocorrelation function. Let us define a MC cyc
as one attempted update per spin. The autocorrelation f
tion of a certain observableO is defined as

g~ t !5
^Ot0

Ot01t&2^Ot0
&2

^Ot0
2 &2^Ot0

&2 . ~65!

The operatorO is, as usual, defined as( rO(r ). Here Ot
denotes the value ofO after t time steps, where a time step
one cycle, i.e., one attempted update per spin. The auto
relation functiong(t) is normalized such thatg(0)51. In
practical situations, the number of MC cyclest between two
consecutive MC samples has to be such thatg(t) is ~almost!
zero.

The observation that the stress tensor does not suffer
much from critical slowing down follows from Fig. 3. Her
we plotted the autocorrelation functionsg(t) for the energy
and the stress tensor, in the case of the Ising model a
critical point, for several different system dimensions. Fo
number of cyclest not too small, the autocorrelation functio
of the energy shows a straight line in the log-normal pl
meaning that its behavior is exponential int. Indeed, the
behavior of the autocorrelation functions for nearly critic
systems is given by

g~ t !;exp~2t/t! for t large, ~66!

where t is the autocorrelation time. The dynamic scali
hypothesis states that the time scalet of a dynamical system
is connected with the length scale, which is the correlat
lengthj, and that this connection is described by a univer
dynamic exponentz,
r

in

ly
,
-

te
re

es

k-

c-

or-

ry

its
a

,

l

n
l

t;jz. ~67!

The exponentz is believed to be connected to the dynam
of the system~in our case, by the Metropolis algorithm! and
to be the same for all observables. For finite systems at t
critical point, the correlation lengthj is bounded by the sys
tem dimensionL, such that

t~L !;Lz. ~68!

We extracted the values oft(L), following from the auto-
correlation function of the energy in Fig. 3, by fitting th
autocorrelation functions to Eq.~66!. For this, we removed
the first data points, up to the point where the plot begins
show a straight line. The values oft(L) were fitted to Eq.
~68!, yielding a value forz of roughly 2. The quoted value in
the literature@26# is z'2.17, which is consistent with ou
findings.

The autocorrelation behavior of the stress tensor, ho
ever, is dramatically different from that of the energy. No
the difference in scale of thet axes in Fig. 3. The autocor
relation function of the stress tensor drops so sharply that
exponential behavior can hardly, if at all, be seen. There
almost no sign of critical slowing down; the autocorrelati
functions even seem to converge for larger and larger s
tems. Even for systems as large as 1803180 spins the auto-
correlation function behaves not significantly different fro
smaller system sizes.

These findings can be explained as follows. The dyna
scaling hypothesis in its general form considers the co
bined spatial and time correlation functionG(r ,t), defined as

FIG. 3. Plots of the autocorrelation functiong(t) of Eq. ~65!,
where t is the number of Monte Carlo cycles. Calculations a
performed using the Metropolis algorithm for the Ising model at
critical point. System dimensions are indicated in the figure.~a!
Autocorrelation function of the stress tensor.~b! Autocorrelation
function of the energy. Note the difference in scale of thex axes of
the plots.



-
c

ha

c

g

f

th

e
r
re

to

sc
h
-
w.
ive
n
c-

ed

nd

by

he

in
C

t
ter

lgo-
s
u-

he
e is

-

57 3795MONTE CARLO METHOD TO CALCULATE THE CENTRAL . . .
G~r ,t !5^O~r0 ,t0!O~r01r ,t01t !&2^O~r0 ,t0!&2 ~69!

for a certain operatorO(r ,t). Here the dynamics of the sys
tem is explicitly taken into account by the time dependen
of the operator. The dynamic scaling hypothesis states t

G~r ,t !5b22xG~b21r ,b2zt !, ~70!

wherex is the critical dimension of the operatorO(r ,t). In
terms of this correlation function, the autocorrelation fun
tion g(t) of Eq. ~65! can be expressed as

g~ t !5

E
0

L

d2r G~r ,t !

E
0

L

d2r G~r ,0!

. ~71!

The integral is over the finite volumeL2. The dynamic scal-
ing hypothesis~70! will be valid provided that the appearin
lengths are smaller than the correlation lengthj, and the
times are smaller than the autocorrelation timet, given by
t;jz. For finite systems,j;L. In that case, Eq.~70! can be
rephrased to

G~r ,t !5t22x/zG~ t21/zr ,1!, ~72!

which yields theL and t dependences in the scaling limit o
Eq. ~71!. Using Eq.~70!, the numerator is

t ~222x!/zE
0

t21/zL
d2r G~r ,1!, ~73!

and G(r ,1) must follow the usual spatial behaviorur u22x.
Now the scaling behavior of the integral depends on whe
it converges or diverges for largeL. Making this distinction,
the scaling behavior of Eq.~71! is

g~ t !;const for x,1, ~74!

g~ t !;t ~222x!/z for x>1. ~75!

This explains our MC results: both cases indicate thatg(t)
must become independent ofL in the scaling limit, i.e., for
largeL. The case of the energy, havingx51, states thatg(t)
must converge to a value independent oft, whereas the cas
of the stress tensor implies thatg(t) becomes a true powe
law in t. This behavior indeed can be seen in Fig. 4, whe
for the stress tensor and for the energy, the values ofg(t) are
plotted as a function of system sizeL for several values oft.
The plot for the energy indicates thatg(t) converges to 1,
whereas the asymptote ofg(t) for the stress tensor is seen
depend ont.

The above analysis also enables us to determine the
ing of the typical simulation time of a MC simulation wit
the system sizeL. This scaling will depend on the MC algo
rithm ~i.e., on z! and on the observable we want to kno
Starting point is that we will want to obtain the same relat
error in the average valuêO(r )& for each system dimensio
L. The errorDO(r ) in the average is proportional to the se
ond moment of the correlation function,

DO~r !
2 5

1

N

1

L2 E
0

Lz

dtE
0

L

d2r G~r ,t !. ~76!
e
t

-

er

,

al-

HereN is the total number of MC cycles, which is suppos
to be much larger than the autocorrelation timeLz. Using, as
above, Eq.~70! and the distinction between converging a
diverging integrals withL, we obtain

DO~r !
2 ;

1

N
Lz22x for x,11 1

2 z, ~77!

DO~r !
2 ;

1

N
L22 for x>11 1

2 z. ~78!

The relative error is obtained by dividing these values
^O(r )&, which scales asL2x. The typical number of MC
cycles N is obtained by demanding it to be such that t
same relative error is obtained for allL. This yields

N;Lz for z.2x22, ~79!

N;L2x22 for z<2x22. ~80!

This implies that, for a relevant operator, like the energy
the Ising model, faster convergence is obtained by a M
algorithm that has a lower value of the dynamic exponenz,
and lowering this value is precisely the point of the clus
algorithm@17#. However, the case of the stress tensor,x52,
represents a border case, because for the Metropolis a
rithm z is only slightly larger than 2. As a result, it is fruitles
to invoke the more sophisticated cluster algorithms for sim
lations on the stress tensor.

Note that the actual simulationtime is, in the case of a
Metropolis algorithm, proportional toL2N, because the time
needed for a single MC cycle is simply proportional to t
number of spins. An important consequence of the abov

FIG. 4. Plots of the autocorrelation functiong(t) of Eq. ~65! vs
the system sizeL. From high to low, the plots amount tot53, 5,
and 10.~a! g(t) for the stress tensor.~b! g(t) for the energy. The
plots show that for the energy,g(t) converges to a value indepen
dent of t, which must be 1. For the stress tensor, however,g(t)
converges to a value that does depend ont.
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that the typical simulation time for the stress tensor
roughly proportional toL4. This contrasts with the compute
time needed for transfer matrix calculations, which is exp
nential inL.

Hence, in principal much larger system sizes can
reached with our MC method than in the transfer mat
method, to calculate the central charge. This is a promis
conclusion for systems of which the value of the cent
charge up to now is an open question@27,5#.

VII. SUMMARY AND DISCUSSION

In this paper, we proposed a Monte Carlo technique
the calculation of the central charge, and some critical
mensions of two-dimensional critical models. The techniq
is based on the universal behavior of the stress tensor
operator that plays an important role in the theory of conf
mal invariance, but of which a lattice representation can e
ily be found as well. The rough data, following from th
Monte Carlo simulation, require a decent fit program to e
tract the central charge and critical dimensions. By comp
ing our Monte Carlo analysis for three different models w
their exact results, we showed that the method works.
explained why, on one hand, simulations on the stress te
are difficult because its expectation value is equipped w
larger error bars than usual. On the other hand, it turns
that the simulations are much easier than usual becaus
stress tensor shows to be remarkably insensitive to crit
slowing down. The latter observation notably ensures t
the typical simulation time of our method scales with t
system sizeL roughly asL4, in contrast with transfer matrix
-
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calculations, which scale exponentially asnL, wheren is the
number of different spin states.

Hence much larger system sizes can be reached with
proposed method than with transfer matrix calculations
least in principle. For that reason, we expect the merits of
method as compared with transfer matrix calculations to
mainly in simulations on models with a large number of sp
statesn, especially when these states become continuous
e.g., in theXY-Ising model.

It is not immediately clear what the advantages~if any! of
our method are over the MC methods of Krech and Land
@13# or Wang and Baker@15#, mentioned in Sec. I. With
these latter methods, the observables to be averaged in
MC simulation are more difficult than in our method. T
obtain accurate results, Krech and Landau had to use
Wolff algorithm @24# and the optimized multiple histogram
analysis of Ferrenberg and Swendsen@28#, together with
large computer power. The results in this paper were
tained using standard Metropolis without histogram analy
on a simple workstation with moderate simulation times, b
are admittedly less accurate. Wang and Baker used a rela
for the central charge that contains the specific heat expo
a as an unknown, and had to sample a region of the ph
diagram in the neighborhood of the critical point. Th
strength of our method as compared to these other techni
remains to be seen.
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